v2.0 of the world's first high school computational linguistics hackathon.

LingHacks is the world's first computational linguistics-themed hackathon (24-hour coding event) series for high schoolers. Our goal is to expose students of all backgrounds to the field of natural language processing and inspire students to pursue computer science in their careers. ​LingHacks is a 24-hour invention competition where you come together with a team and build a software project that integrates computational linguistics and solves a scientific or social problem.

Computational linguistics, otherwise known as natural language processing, is the field of artificial intelligence that applies to the synthesis and analysis of language and speech. Things like machine translation technologies, voice assistants, search engines, and chatbots are all powered by computational linguistics tools. It's a fascinating synergy of scientific techniques applied to an elegant humanity that is part and parcel of our core human identities. 

No programming experience? No worries! We've designed workshops for all skill levels that will help you gain skills in computer science, artificial intelligence, machine learning, and natural language processing.

View full rules

Eligibility

High school students at or over the age of 13 at any experience level are welcome! There is no linguistics or programming experience required. We have designed workshops and will have mentors onsite to help you gain skills in programming, computational linguistics, and research. 

Teams can be between 1 and 4 people, and you don't need to have a team or an idea beforehand--we'll have ideation and team-forming sessions!

Judges

Krishna Babu

Krishna Babu
UCLA Computer Science '18

Melissa Roemmele, Ph.D.

Melissa Roemmele, Ph.D.
Research Scientist, SDL plc

Karen Kincy

Karen Kincy
Software Engineer, Google

Urja Nadibail

Urja Nadibail
MTS, Oracle

Anagha Todalbagi

Anagha Todalbagi
Software Engineer, Suki

Pradeep Gaddam

Pradeep Gaddam
Co-Founder & CTO, ConnecPath

Yan Qu, Ph.D.

Yan Qu, Ph.D.
Director of Data Science, Fraud & Risk, Intuit

Tien Han

Tien Han
Software Engineer, Hackbright Academy

Nandita Naik

Nandita Naik
Founder, HumanityHacks

Adhiraj Somani

Adhiraj Somani
Engineering Manager, Sentry

Judging Criteria

  • Creativity
    Do other things like this exist? Is it a new and unexpected application of NLP?
  • Practicality
    Does it solve a real-world problem? Could it be implemented in the near future?
  • Complexity
    How difficult was it to make the project?
  • Potential
    Does it have the potential for long-term research and development?
  • Research
    Was the idea thoroughly researched? Were sources and previous research cited? Are potential pitfalls and workarounds acknowledged?
  • Understanding
    Was the project and all accompanying algorithms thoroughly explained?
  • Completeness & Performance
    Is your algorithm or model reliable? Is it accurate and precise?